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Introduction. Given a “seed” function f(x) we might—subject to appropriate
restrictions—employ operations of the ordinary calculus to construct

· · · ←
∫∫∫

f ←
∫∫

f ←
∫
f ← fff → f ′ → f ′′ → f ′′′ → · · ·

and seek to “interpolate” between the points thus marked out in function space.
The result would be a “fractional calculus.” It was with that admittedly vague
(and, as I discovered, not terribly original1) thought in mind that, prior to
a recent excursion into the fractional calculus,2 I undertook to review—from
a somewhat eccentric point of view—some of the most rudimentary elements
of interpolation/extrapolation theory. Here I record the results of that brief
effort.

An element of ambiguity attaches characteristically and unavoidably to
all interpolation/extrapolation schemes, which fall therefore within the general
ruberic of the elaborately worked-out subject called “approximation theory.”
One looks in all cases for the scheme that pertains “most naturally” to the
problem at hand, in the sense of being on the one hand “simplest,” and on
the other hand “most empowering.” In a broad class of typical applications
the objective is to construct a best-fit analytical description of observational
data. That class of applications is not of present interest to me. I draw my

1 Leonard Euler had expressed a similar thought when, in , he wrote

“Concerning transcendental progressions whose terms cannot be
given algebraically: when n is a positive integer, the ratio dnf/dxn

can always be expressed algebraically. Now it is asked: what kind of
ratio can be made if n be a fraction? . . . the matter may be expedited
with the help of the interpolation of series, as explained earlier in
this dissertation.”

What Euler might have had specifically in mind by the phrase “interpolation
of series” I can, however, only guess. . . and will.

2 See “Construction & physical application of the fractional calculus” ().
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inspiration instead from certain relatively more formal/theoretical applications
of ideas borrowed from interpolation theory—applications to (for example)
the description and direct geometrical interpretation of the elements R of the
n-dimensional rotation group O(n), to certain counting problems that arise
in connection with the theory of hyperspherical harmonics. . . and to problems
suggested by the fractional calculus. I begin somewhat obliquely:

1. Triangular and other figurate numbers. The triangular numbers ∆(n) arise
familiarly from the following sequence of constructions

• •
• •

•
• •
• • •

etc.

They occur in connection with ennumerative problems of many types—the
theory of (anti)symmetric matrices provides a typical instance




a11 a12 a13 · · · a1n

∗ a22 a23 · · · a2n

∗ ∗ a33 · · · a3n
...

...
...

...
∗ ∗ ∗ · · · ann




—and are in themselves almost (but not quite) too simple to support theoretical
statements of any interest.3 The triangular numbers do, however, support a rich
population of natural generalizations, and some (at least recreational) interest
does attach to the relationships which come into view when that population
is regarded as a whole.4 For example: the triangular numbers {1, 3, 6, 10, . . .}

3 On another occasion I hope to discuss physical implications of the curious
(and by no means elementary) fact that

2p − 1 is triangular only in the cases p = 1, 2, 4 and 12

The statement 2p − 1 = 1
2n(n + 1) can be formulated 2p+3 − 7 = (2n + 1)2.

On pp. 322–334 of the Collected Papers of Srinivasa Ramanujan (edited by
G. H. Hardy et al ()) one finds a list of “questions and solutions submitted
by Ramanujan to the Journal of the Indian Mathematical Society.” Question
464 reads “2p − 7 is a perfect square for the values 3, 4, 5, 7, 15 of p. Find
other values.” This has traditionally been interpreted as a conjecture that
there exist no other values. The conjecture was proved correct by T. Nagell in
Norsk Matematisk Tidsskrift 30, 62 (1948), and (independently) by T. Skolem,
S. Chowla & D. Lewis, Proc. Amer. Math. Soc. 10, 663 (1959). D. Lewis,
Pacific Journal of Math. 11, 1063 (1961) shows Ramanujan’s conjecture to
comprise only the simplest instance of a general class of related problems.

4 Tom Apostol, in the Historical Introduction to his Introduction to Analytic
Number Theory (), remarks that figurate numbers were of special interest
already to the Pythagoreans because they served to link numbers with geometry.
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arise by partial summation from the sequence

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16, . . .

Partial summation on the related arithmetic sequence

1, ∗,3, ∗,5, ∗,7, ∗,9, ∗ ,11, ∗ ,13, ∗ ,15, ∗ , . . .

gives rise on the other hand to the sequence {1, 4, 9, 16, . . .} of “square numbers”

• • ◦
◦ ◦

• • ◦
• • ◦
◦ ◦ ◦

etc.

while summation on the arithmetic sequence

1, ∗, ∗,4, ∗, ∗,7, ∗, ∗,10, ∗ , ∗ ,13, ∗ , ∗ ,16, . . .

generates the sequence {1, 5, 12, 22, . . .} of “pentagonal numbers,” summation
on the sequence

1, ∗, ∗, ∗,5, ∗, ∗, ∗, 9, ∗ , ∗ , ∗ ,13, ∗ , ∗ , ∗ , . . .

generates the sequence {1, 6, 15, 28, . . .} of “hexagonal numbers,” etc. More
generally, partial summation on the arithmetic sequence

1, 1 + a, 1 + 2a, 1 + 3a, . . .

gives rise to the sequence {1, 2 + a, 3 + 3a, 4 + 6a, . . .} of “polyhedral numbers
of order N = a + 2.” The notations ∆(n), (n), . . .do not readily generalize,
so we agree to write

P (n; 3) = nth triangular number ≡ ∆(n)

P (n; 4) = nth square number
...

P (n;N) = nthpolygonal number of order N

By “stacking” triangles of graded size we obtain the “tetrahedral numbers”

T (n; 3) ≡
n∑

k=1

∆(k)

and if we pass into the 4th-dimension and proceed to “stack tetrahedra” we
obtain the “hypertetrahedral numbers”

T (n; 4) ≡
n∑

k=1

T (k; 3)
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The procedure just outlined can obviously be extended to arbitrary dimension
D. Polyhedral numbers of more general design (N > 3) support a similar
program of dimensional extension; the associated figures are “hyperpyramids”
with polyonal bases. . . and are, for my purposes, relatively uninteresting.

It was obvious already to the infant Gauss that

2∆(n) = 1 + 2 + 3 + · · ·+ n
+ n+ (n− 1) + (n− 2) + · · ·+ 1

= n(n+ 1)

which gives the familiar result

∆(n) = 1
2n(n+ 1) (1)

So also does the construction

◦ ◦ ◦ ◦
• ◦ ◦ ◦
• • ◦ ◦
• • • ◦
• • • •

And from the structure of the sequence that generates P (n;N) it is clear that

P (n;N) = n+ a∆(n− 1)

From this it follows in particular that

P (n; 3) = n+ 1 · 1
2 (n− 1)n = 1

2n(1n+ 1) = 1
2n(n+ 1)

P (n; 4) = n+ 2 · 1
2 (n− 1)n = 1

2n(2n+ 0) = n2

P (n; 5) = n+ 3 · 1
2 (n− 1)n = 1

2n(3n− 1)
P (n; 6) = n+ 4 · 1

2 (n− 1)n = 1
2n(4n− 2)

P (n; 7) = n+ 5 · 1
2 (n− 1)n = 1

2n(5n− 3)
...

Looking now in greater detail to the “tetrahedral numbers,” we have

T (n; 1) ≡ n : a formal convenience

T (n; 2) ≡
n∑

k=1

T (k; 1) ≡ ∆(n) = 1
2n(n+ 1) =

(
n+ 1

2

)

T (n; 3) ≡
n∑

k=1

T (k; 2) =
n∑

k=1

1
2k(k + 1)

= 1
6n(1 + n)(2 + n)

= 1
3n+ 1

2n
2 + 1

6n
3

∼ 1
3!n

3 for n large
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T (n, 4) ≡
n∑

k=0

T (n, 3) = 1
24n(1 + n)(2 + n)(3 + n)

= 1
4n+ 11

24n
2 + 1

4n
3 + 1

24n
4

∼ 1
4!n

4 for n large

T (n, 5) ≡
n∑

k=0

T (n, 4) = 1
120n(1 + n)(2 + n)(3 + n)(4 + n)

= 1
5n+ 5

12n
2 + 7

24n
3 + 1

12n
4 + 1

120n
5

∼ 1
5!n

5 for n large
...

T (n,D) ≡
n∑

k=0

T (k,D − 1) = 1
D!n(1 + n)(2 + n)(3 + n) · · · ([D − 1] + n)

= (D+n−1)!
D!(n−1)! =

(
D + n− 1

D

)
∼ 1

D!n
D for n large

The “Pochhammer polynomials” are defined5 (x)n ≡ x(x+1)(x+2) · · · (x+n−1)
and, in view of the preceding results, permit us to write

T (n,D) = 1
D! (n)D

The same information can be expressed also recursively:

T (n, 2) = T (n, 1) · 1 + n
2

T (n, 3) = T (n, 2) · 2 + n
3

= T (n, 1) · 1 + n
2
· 2 + n

3

T (n, 4) = T (n, 3) · 3 + n
4

= T (n, 1) · 1 + n
2
· 2 + n

3
· 3 + n

4
...

If, instead of stacking triangles, we stack squares we are led (by dimensional
generalization; i.e, by successively stacking cubes, hypercubes, etc.) to the
“pyramidal numbers” of ascending order:

S(n; 2) ≡
n∑

k=1

k2

S(n; 3) ≡
n∑

k=1

k3

...

5 See J. Spanier & K. Oldham, Atlas of Functions (), Chapter 18.
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We are informed by Mathematica that

S(n, 0) = n

∆(n) = S(n, 1) = 1
2n(1 + n)

S(n, 2) = 1
6n(1 + n)(1 + 2n)

S(n, 3) = 1
4n

2(1 + n)2

= [S(n, 1)]2

S(n, 4) = 1
5S(n, 2) · polynomial of degree 2

S(n, 5) = 1
3S(n, 3) · polynomial of degree 2

S(n, 6) = 1
7S(n, 2) · polynomial of degree 4

S(n, 7) = 1
6S(n, 3) · polynomial of degree 4

...

I have here surpressed certain details in order to highlight a factorization pattern
which was striking news to me when I came upon it, but which turns out to be
classic; when I mentioned the pattern to Ray Mayer he promptly directed my
attention to a recent paper6 in which the result is attributed to one Faulhaber
().

We have now in hand a population of integer-valued functions of integers
which are (for evident reasons) known collectively as “figurate numbers.” Such
numbers acquire their quaint charm partly from the fact that they spring from
ennumerative aspects of some pretty figures, and partly from the fact that
they support a rich variety of pretty algebraic identities—relationships which
are in most cases suggested by the figures themselves, and which prove useful
for the same reasons, and to the same extent, that the associated figures are
commonplace. This is not deep mathematics, but neither is it utterly devoid
of interest; Euler returned to the subject repeatedly,7 and it has recently been
pressed into elegant service by John Conway8 as a model-in-miniature of what
mathematics is all about.

I digress to provide now a few examples of the “geometrically motivated
algebraic identities” to which I just alluded. It is evident from the first of the
following figures that

∆(2n) = 3 ·∆(n) + ∆(n− 1)

6 A. F. Beardon, “Sums of powers of integers,” Amer. Math.Monthly 103,
201, (1996); Beardon’s Theorem 3.1 appears to be precisely the result I had
conjectured.

7 See Capitel 5: Von den Figurirten oder Vieleckigten Zahlen §§425–439 of
Vollständige Anleitung zur Algebra, Erster Theil (), which can be found at
pp. 159–164 of Leonhardi Euleri Opera Omnia, Series I, Volume I ().

8 See Chapter II of The Book of Numbers by Conway & R. K. Guy ().
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•
• •
• • •
• • • •
• ◦ ◦ ◦ •
• • ◦ ◦ • •
• • • ◦ • • •
• • • • • • • •

while from the following figure

•
• •
• • •
• • • •
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦ •
• • ◦ ◦ ◦ • •
• • • ◦ ◦ • • •
• • • • ◦ • • • •

we obtain an equation that describes not ∆(even) but ∆(odd):

∆(2n+ 1) = 3 ·∆(n) + ∆(n+ 1)

Again, it is evident—depending upon which way we read the following figure

◦ • • • • •
• ◦ • • • •
• • ◦ • • •
• • • ◦ • •
• • • • ◦ •
• • • • • ◦

—that
n2 = 2 ·∆(n− 1) + n

= 2 ·∆(n)− n
= 2 · T (n, 2)− T (n, 1)

of which n2 = 2 · 12n(1 +n)−n provides algebraic confirmation. Less obviously

n3 = 6 · T (n, 3)− 6 · T (n, 2) + T (n, 1)
= [n(1 + n)(2 + n)]− [3n(1 + n)] + [n]
= [n3 + 3n2 + 2n]− [3n2 + 3n] + [n]

n4 = 24 · T (n, 4)− 36 · T (n, 3) + 14 · T (n, 2)− T (n, 1)
...
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By adjustment of the preceding figure we obtain

• • • • • •
◦ • • • • •
◦ ◦ • • • •
◦ ◦ ◦ • • •
◦ ◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦ •

giving
n2 = ∆(n) + ∆(n− 1)

and by stacking such figures we obtain

S(n; 2) = T (n; 3) + T (n− 1; 3)

which in algebraic notation means
n∑

k=1

k2 = 1
6n(1 + n)(2 + n) + 1

6 (n− 1)n(1 + n)

= 1
6n(1 + n)(1 + 2n) (2)

and therefore reproduces a classic formula stated previously. Conway provides
two alternative constructions of this result, and discusses also a great many
variants of the same general theme.9

2. Constructing figurate number formulae by extrapolation from leading cases. I
turn now to description of an idea which began as a doodle,10 but will permit
us to construct figurate number formulae (not by appeal to appropriately-
drawn figures but) from leading-case data by means of a standardized algebraic
procedure. That procedure will provide a kind of bridge to the methods of
classical interpolation theory. To illustrate the procedure, we look back again
to the triangular numbers; since

∆(n) ≡
n∑

k=1

k becomes
∫ n

0

k dk = 1
2n

2 in the continuous limit

we infer that
∆(n) = a+ bn+ cn2

We will use the data
∆(0) = 0 = a+ b0 + c02

∆(1) = 1 = a+ b1 + c12

∆(2) = 3 = a+ b2 + c22

9 Additional constuctions can be found in R. B. Nelson’s Proofs Without
Words ().

10 It was late afternoon on a spring Tuesday in the early ’s, and President
Bragdon’s Faculty Advisory Committee had become lost in pursuit of some
long-forgotten fine point.
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to fix the values of a, b and c. Immediately
 1 0 0

1 1 1
1 2 4





 a
b
c


 =


 0

1
3




giving 
 a
b
c


 = 1

2


 2 0 0
−3 4 −1

1 −2 1





 0

1
3


 = 1

2


 0

1
1




and we recover the familiar result

∆(n) = 1
2n+ 1

2n
2 = 1

2n(n+ 1)

∼ 1
2n

2 for n large

Suppose our initial conjecture had on the other hand read

∆(n) = a+ bn+ cn2 + dn3

Proceeding exactly as before—but from an enlarged data set

∆(0) = 0 = a+ b0 + c02 + d03

∆(1) = 1 = a+ b1 + c12 + d13

∆(2) = 3 = a+ b2 + c22 + d23

∆(3) = 6 = a+ b3 + c32 + d33

—we have 


1 0 0 0
1 1 1 1
1 2 4 8
1 3 9 27






a
b
c
d


 =




0
1
3
6






a
b
c
d


 = 1

6




6 0 0 0
−11 18 −9 2

6 −15 12 −3
−1 3 −3 1







0
1
3
6


 = 1

2




0
1
1
0




We have, in short, labored harder than necessary to reproduce precisely our
previous result (or, from another point of view, to demonstrate that ∆(n) is in
fact quadratic in n). Actually, we labored harder than necessary already in the
first instance, for ∆(0) =⇒ a = 0, and obviates any need to include a in our
list of undetermined coefficients. And it is only by convenient convention that
we worked from “leading data;” we could equally well have worked from (say)
∆(5) = 15 and ∆(14) = 105.

Looking now to another example (the example which figured in my original
doodle), we proceed from the observation that

S(n; 2) ≡
n∑

k=1

k2 becomes
∫ n

0

k2 dk = 1
3n

3 in the continuous limit
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to the conjecture that

S(n; 2) = a+ bn+ cn2 + dn3

From
S(0; 2) : 0 = a+ b0 + c02 + d03

S(1; 2) : 12 = 1 = a+ b1 + c12 + d13

S(2; 2) : 12 + 22 = 5 = a+ b2 + c22 + d23

S(3; 2) : 12 + 22 + 32 = 14 = a+ b3 + c32 + d33

we have 


1 0 0 0
1 1 1 1
1 2 4 8
1 3 9 27






a
b
c
d


 =




0
1
5
14




giving 

a
b
c
d


 = 1

6




6 0 0 0
−11 18 −9 2

6 −15 12 −3
−1 3 −3 1







0
1
5
14


 = 1

6




0
1
3
2




whence again the classic formula

S(n; 2) = 1
6n+ 3

6n
2 + 2

6n
3 = 1

6n(1 + n)(1 + 2n)

In each of the preceding examples the pattern of the argument has been
the same: we require of a polynomial P (x) = p0 + p1x+ p2x2 + · · ·+ pnx

n that
it assume designated values {P0, P1, P2, . . . , Pn} at x = {0, 1, 2, . . . , n}, and so
write 



1 0 02 . . . 0n

1 1 12 . . . 1n

1 2 22 . . . 2n

...
...

...
...

1 n n2 . . . nn







p0
p1
p2
...
pn


 =




P0

P1

P2
...
Pn




giving 


p0
p1
p2
...
pn


 =




1 0 02 . . . 0n

1 1 12 . . . 1n

1 2 22 . . . 2n

...
...

...
...

1 n n2 . . . nn




–1 


P0

P1

P2
...
Pn




Thus “by extrapolation” do low-order instances of any selected figurate number
lead us to a formulæ descriptive of the general instances of such numbers. Thus
also do we establish contact with the central idea of. . .

3. Classical interpolation theory. Given a function f(x) we seek a polynomial

P (x) = p0 + p1x+ p2x2 + · · ·+ pnx
n
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which assumes values coincident with those of f(x) at the (n+1)-tuple of points
{x0, x1, x2, . . . , xn}; we want it to be, in other words, the case that

P (xi) ≡ p0 + p1xi + p2x2
i + · · ·+ pnx

n
i = fi ≡ f(xi)

and propose to use the simple function P (x) to interpolate/extrapolate the
f -data {fi}. Immediately




1 x0 x2
0 . . . xn

0

1 x1 x2
1 . . . xn

1

1 x2 x2
2 . . . xn

2
...

...
...

...
1 xn x2

n . . . xn
n







p0
p1
p2
...
pn


 =




f0
f1
f2
...
fn


 (3)

gives 


p0
p1
p2
...
pn


 =




1 x0 x2
0 . . . xn

0

1 x1 x2
1 . . . xn

1

1 x2 x2
2 . . . xn

2
...

...
...

...
1 xn x2

n . . . xn
n




–1 


f0
f1
f2
...
fn




which we agree to abbreviate
p = V

–1f

My V-notation derives from the circumstance that det V is a classic object called
the “Vandermonde determinant.”11 A surprisingly simple argument12 gives

V ≡ det V =
∏
i>j

(xi − xj)

Look, for example, to the case n = 2:
 p0
p1
p2


 =


 1 x0 x2

0

1 x1 x2
1

1 x2 x2
2




–1 
 f0
f1
f2




11 Cramer’s Rule (which had been anticipated already by Maclauarin in )
is described in Chapter 2 of Gabriel Cramer’s Introduction à l’analyse des lignes
corbes algébriques (), and contains an implicit allusion to the concept of
a determinant. But determinants—detached form any reference to systems of
linear equations—were apparently first studied by A. Vandermone (-),
whom Lebesgue has argued deserves to be called the “father of the theory of
determinants.” Vandermonde was known as a mathematician among musicians,
but as a musician among mathematicians, and was active as a mathematician
only between the years  and , when he produced a total of four papers.
Those, however, anticipated aspects of the work of Abel and Galois, and also
of Gauss, by whom they were well regarded. Vandermonde was in later years
an active revolutionary and occasional musical theorist.

12 See, for example, L. Weisner, Introduction to the Theory of Equations
(), p. 56.
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Mathematica confirms that V = (x2 − x0)(x2 − x1) · (x1 − x0) and supplies the
information that

p0 = +
x1x2

(x0 − x1)(x0 − x2)
f0 +

x0x2

(x1 − x0)(x1 − x2)
f1 +

x0x1

(x2 − x0)(x2 − x1)
f2

p1 = − x1 + x2

(x0 − x1)(x0 − x2)
f0 −

x0 + x2

(x1 − x0)(x1 − x2)
f1 −

x0 + x1

(x2 − x0)(x2 − x1)
f2

p2 = +
1

(x0 − x1)(x0 − x2)
f0 +

1
(x1 − x0)(x1 − x2)

f1 +
1

(x2 − x0)(x2 − x1)
f2

So we have
f(x) ≈ P (x)

with

P (x) = +
{

x1x2
(x0−x1)(x0−x2)

f0 + x0x2
(x1−x0)(x1−x2)

f1 + x0x1
(x2−x0)(x2−x1)

f2

}
−

{
x1+x2

(x0−x1)(x0−x2)
f0 + x0+x2

(x1−x0)(x1−x2)
f1 + x0+x1

(x2−x0)(x2−x1)
f2

}
x

+
{

1
(x0−x1)(x0−x2)

f0 + 1
(x1−x0)(x1−x2)

f1 + 1
(x2−x0)(x2−x1)

f2

}
x2

which by mere reorganization becomes

P (x) = f0 · L0(x) + f1 · L1(x) + f2 · L2(x) (4)

with

L0(x) ≡
x1x2

(x0 − x1)(x0 − x2)
− x1 + x2

(x0 − x1)(x0 − x2)
x+

1
(x0 − x1)(x0 − x2)

x2

L1(x) ≡
x0x2

(x1 − x0)(x1 − x2)
− x0 + x2

(x1 − x0)(x1 − x2)
x+

1
(x1 − x0)(x1 − x2)

x2

L2(x) ≡
x0x1

(x2 − x0)(x2 − x1)
− x0 + x1

(x2 − x0)(x2 − x1)
x+

1
(x2 − x0)(x2 − x1)

x2

Lagrange observed that (4) can be deduced by an argument that makes no
explicit appeal to the methods of linear algebra, and can at the same time be
expressed much more compactly/memorably. He begins by introducing

L(x) ≡ (x− x0)(x− x1)(x− x2) (5)
= polynomial with roots at the data points {x0, x1, x2}

Then

L′(x) = (x− x1)(x− x2) + (x− x0)(x− x2) + (x− x0)(x− x1)

gives
L′(x0) = (x0 − x1)(x0 − x2)
L′(x1) = (x1 − x0)(x1 − x2)
L′(x2) = (x2 − x0)(x2 − x1)
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from which we get the denominators. Moreover

L(x)
(x− x0)

= (x− x1)(x− x2) = x1x2 − (x1 + x2)x+ x2

L(x)
(x− x1)

= (x− x0)(x− x2) = x0x2 − (x0 + x2)x+ x2

L(x)
(x− x2)

= (x− x0)(x− x1) = x0x1 − (x0 + x1)x+ x2

from which we get the numerators. The polynomial (3) can therefore be
described

P (x) = f0 ·
L(x)

(x− x0)L′(x0)
+ f1 ·

L(x)
(x− x1)L′(x1)

+ f2 ·
L(x)

(x− x2)L′(x2)

=
∑

k

fk ·
L(x)

(x− xk)L′(xk)
: Lagrange interpolation formula (6)

The P (x) thus constructed is a polynomial, but—owing to the structure of the
denominators—is not manifestly so. According to K. Rektorys13 “the Lagrange
interpolation formula, although very important in theoretical considerations, is
not. . . suitable for numerical evaluation.” Rektorys turns therefore (as now also
do I) to an account of Newton’s interpolation technique. From the data

f0 ≡ f(x0) f1 ≡ f(x1) f2 ≡ f(x2)

Newton forms14 ascending generations of “divided differences”

f(x0, x1) ≡
f1 − f0
x1 − x0

f(x2, x1) ≡
f2 − f1
x2 − x1

f(x0, x1, x2) ≡
f(x2, x1)− f(x1, x0)

x2 − x0

and writes

P (x) = f0 + (x− x0)f(x0, x1) + (x− x0)(x− x1)f(x0, x1, x2) (7)

= f0 + (x− x0)
f1 − f0
x1 − x0

+ (x− x0)(x− x1)
(f2 − f1)(x1 − x0)− (f1 − f0)(x2 − x1)

(x2 − x0)(x2 − x1)(x1 − x0)

= f0

{
1− x − x0

x1 − x0
+

(x − x0)(x − x1)(x2 − x1)
(x2 − x0)(x2 − x1)(x1 − x0)

}
+ etc.

= f0

{
x1x2 − (x1 + x2)x+ x2

(x0 − x1)(x0 − x2)

}
+ etc.

13 Survey of Applicable Mathematics (), p. 1223.
14 See Abramowitz & Stegun, p. 877.
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Evidently Newton’s (7) and Lagrange’s (6) comprise merely distinct modes of
approaching and displaying the identically same result. A great number of
other organizational principles are described in the literature; all amount, in
effect, to expansion of a determinant, since (by a fundamental property which
Vandermonde was the first to identify)

det




P (x) 1 x x2 . . . xn

f0 1 x0 x2
0 . . . xn

0

f1 1 x1 x2
1 . . . xn

1

f2 1 x2 x2
2 . . . xn

2
...

...
...

...
...

fn 1 xn x2
n . . . xn

n




= 0

forces P (xk) = fk : k = 0, 1, . . . , n.

In a broad class of practical applications one has special interest in (i)
optimizing the selection of the sample points xk and (ii) estimating/minimizing
the error inherent in the interpolation procedure. For when we write

f(x) ≈ P (x)

we mean that

f(x) = P (x) +R(x) and R(x) is in some absolute/relative sense “small”

The question is: “How small is ‘small’?” To address the question one must,
of course, know something about the distinguishing properties of the function
f(x), and it is in reference to those properties (whatever they are) that the
answer will be phrased. For example, if f(x) is known to be n + 1 times
differentiable on the interval [a, b] where

a ≡ min{x0, x1, x2, . . . , xn}
b ≡ max{x0, x1, x2, . . . , xn}

then it can be shown that

|R(x)| ≤ 1
(n+1)! |(x− x0)(x− x1) · · · (x− xn)| ·max |fn+1(ξ)| : ξ ∈ [a, b]

My own present interest in interpolation theory lies, however, elsewhere, so I
will not pursue this aspect of the subject.

4. Illustrative theoretical application of the Lagrange interpolation formula. If the
real N ×N matrix A is antisymmetric and if

R ≡ eA

then R
–1 = R

T and det R = etrA = e0 = +1: R is a (proper) rotation matrix ,
and

x −→ x′ = Rx
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serves to describe a (proper) rotation in N -dimensional space. A sharp sense
of the geometrical meaning of such a transformation can be achieved by an
argument which hinges on the spectral properties of A and which makes essential
use of algebraic ideas we have come to associate with the Lagrange interpolation
formula.15

By quick calculation

∣∣∣∣−λ a
−a −λ

∣∣∣∣ = +
{
a2 + λ2

}
∣∣∣∣∣∣
−λ a b
−a −λ c
−b −c −λ

∣∣∣∣∣∣ = −
{
(a2 + b2 + c2)λ+ λ3

}

so

A2×2 ≡
(

0 a
−a 0

)
has eigenvalues {±iϕ} with ϕ ≡

√
a2

A3×3 ≡


 0 a b
−a 0 c
−b −c 0


 has eigenvalues {0,±iϕ} with ϕ ≡

√
a2 + b2 + c2

Generally, the characteristic polynomial

det(AN − λI ) is
{ even when N is even

odd when N is odd

but is in every case real, though its roots—the eigenvalues of AN—are in every
case imaginary.16 Evidently

det(AN − λI ) = (−)N

{
(λ2 + ϕ2

1)(λ
2 + ϕ2

2) · · · (λ2 + ϕ2
n) if N = 2n

λ(λ2 + ϕ2
1)(λ

2 + ϕ2
2) · · · (λ2 + ϕ2

n) if N = 2n+ 1

where the real numbers ϕk (k = 1, 2, . . . , n) serve to describe the (imaginary)
spectrum of A:

eigenvalues of AN =
{

{±λ1,±λ2, . . . ,±λn} if N = 2n
{λ0,±λ1,±λ2, . . . ,±λn} if N = 2n+ 1

with λ0 ≡ 0 and λk ≡ iϕk.

15 Here I must be content merely to outline the argument; for details (and
the proofs of some bald assertions), see “What does an N -dimensional rotation
look like?” (Notes for a Reed College Math Seminar, presented  February
) in transformational physics & physical geometry (–).

16 The real antisymmetry of A implies the hermiticity of H ≡ iA, and the
eigenvalues of H are, by a familiar argument, necessarily real.
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Looking now specifically to the even-dimensional case N = 2n : the
Cayley-Hamilton theorem supplies

(A2 − λ2
1 I)(A2 − λ2

2 I) · · · (A2 − λ2
n I) = O

or again
(S− s1 I)(S− s2 I) · · · (S− sn I) = O

where the notation has been designed to emphasize the real symmetry—whence
the hermiticity—of the matrix S ≡ A

2, of which {s1, s2, . . . , sn} are the (in the
simplest case) doubly-degenerate eigenvalues. The spectral theory of hermitian
operators now supplies

S = s1P1 + s2P2 + · · ·+ snPn (8)

where {P1,P2, . . . ,Pn} is the complete orthogonal set of projection matrices

P
2
k = Pk : k = 1, 2, . . . , n

PjPk = O : j �= k

P1 + P2 + · · ·+ Pn = I

which project onto (and serve thus to define) the orthogonal 2-dimensional
eigenspaces of S. Explicit descriptions of the matrices Pk will be developed in
a moment, but from results already in hand it follows that

A
0 = s01P1 + s02P2 + · · ·+ s0nPn

A
2ν = S

ν = sν1P1 + sν2P2 + · · ·+ sνnPn

= λ2ν
1 P1 + λ2ν

2 P2 + · · ·+ λ2ν
n Pn

A
2ν+1 = AS

ν = −iλ2ν+1
1 A1P1 − iλ2ν+1

2 A2P2 − · · · − iλ2ν+1
n AnPn




(9)

where ν = 1, 2, . . . and the real matrices Ak are defined Ak ≡ iA/λk = A/ϕk.
From this information it follows, in particular, that

R = eA =
∞∑

ν=0

{
1

(2ν)!
A

2ν +
1

(2ν + 1)!
A

2ν+1

}

=
n∑

k=1

(
coshλk · I− i sinhλk · Ak

)
Pk

=
n∑

k=1

(
cosϕk · I + sinϕk · Ak

)
Pk (10)

It is mainly to facilitate discussion of the simple geometrical interpretation of
this result that we look now (as promised) to the explicit construction of the
projection matrices Pk; to write
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1 1 1 . . . 1
s1 s2 s3 . . . sn
s21 s22 s23 . . . s2n
...

...
...

...
sn−1
1 sn−1

2 sn−1
3 . . . sn−1

n







P1

P2

P3
...
Pn


 =




I

S

S
2

...
S

n−1


 (11)

is simply to renotate some leading case instances of an equation which at (9)
was already displayed in the general case, but does serve usefully to put us in
mind of algebraic material developed in §3, for (11) is structurally identical to
(3) except in one detail: the “Vandermonde matrix” has been transposed. But
from results already in hand—from


 p0
p1
p2


 =


 1 x0 x2

0

1 x1 x2
1

1 x2 x2
2




–1 
 f0
f1
f2




↓
= result developed at the top of p. 12

and the elementary fact that

(transpose)–1 = (inverse)T

—we have 
 p0
p1
p2


 =


 1 1 1
x0 x1 x2

x2
0 x2

1 x2
2




–1 
 f0
f1
f2




↓

p0 =
x1x2f0 − (x1 + x2)f1 + f2

(x0 − x1)(x0 − x2)

p1 =
x0x2f0 − (x0 + x2)f1 + f2

(x1 − x0)(x1 − x2)

p2 =
x0x1f0 − (x0 + x1)f1 + f2

(x2 − x0)(x2 − x1)

In cases of the type fk = xk in which we at present have special interest the
preceding equations simplify; they assume, in fact, precisely the structure of
the previously-encountered Lagrange polynomials:

p0 = L0(x) =
(x − x1)(x − x2)
(x0 − x1)(x0 − x2)

=
L(x)

(x− x0)L′(x0)
, etc.

Thus is it seen to follow from (11) that

Pk = Lk(S) with Lk(S) =
n∏

j=1
j �=k

(S− sjI)
(sk − sj)

=
n∏

j=1
j �=k

( A
2 + ϕ2

j I)
(−ϕ2

k + ϕ2
j )

(12)
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Drawing as needed upon the Cayley-Hamilton theorem, one either sees directly
or can readily show that the matrices Pk are real symmetric matrices that
commute with A and with each other, that each Pk projects onto a 2-space
(P2 = P and det(P−λI) ∼ (λ− 1)2λn−2), and that collectively they comprise a
complete commutative set of orthogonal projectors. Let the arbitrary N -vector
x be decomposed

x = x1 + x2 + · · ·+ xn with xk ≡ Pk x ∈ kth eigenspace

Let ak ≡ Axk. From Pk ak = PkAxk = APk xk = Axk = ak we see that so also
does ak ∈ kth eigenspace. From the antisymmetry of A it follows that xk ⊥ ak;
i..e., that xk···ak = xk···Axk = 0. Moreover,

ak···ak = xk···AT
Axk = −xk···SPk xk

= −sk xk···xk by (12) and the Cayley-Hamilton theorem

= +ϕ2
k xk···xk

so not only are xk and yk ≡ ak/ϕk = AkPkx perpendicular; they have the same
Euclidean length. Returning in the light of this result to (10), we see that the
action of R can be described

x −→ Rx =
n∑

k=1

(cosϕk · xk + sinϕk · yk)

= sum of n orthogonal copies of O(2)

To achieve completeness in the odd-dimensional case N = 2n+ 1 one
must adjoin to the projection matrices {P1,P2, . . . ,Pn} a matrix

P0 = I − (P1 + P2 + · · ·+ Pn)

which projects onto the “dangling 1-space” familiar in the case N = 3 as the
invariant “axis” of the rotation. One obtains

R = P0 +
n∑

k=1

(
cosϕk · I + sinϕk · Ak

)
Pk (13)

where the “Lagrange construction” (12) serves as before to define the projection
matrices Pk.

It is interesting to observe that the algebraic methods of interpolation
theory—methods associated particularly with the name of Lagrange—have been
central to the preceding discussion even though it was addessed to a geometrical
question devoid of any recognizably “interpolative” features.17

17 For further evidence of the natural intrusion of interpolative formulæ into
the “function theory of matrices” see Chapter V of P. Lancaster, Theory of
Matrices () and the allusion to the “Sylvester interpolation formula” which
appears on p. 102 of R. Bellman’s Introduction to Matrix Analysis ()
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5. Curve-fitting & generalized matrix inversion. To begin at the simple beginning:
two points determine a line, but three points determine a triple of lines, and
N points determine a 1

2N(N − 1)-fold population of lines. The notion of a
“line drawn through N points” is, in the general case (i.e., unless those points
conform to a “collinearity condition”), therefore absurd on its face; on the other
hand, we can readily imagine situations in which we are motivated to speak of
the line which “best approximates” such an impossibility. To phrase the issue
analytically, we write

y = a+ bx (14)

to describe lines in general, and to discover the line which interpolates between
(x1, y1) and (x2, y2) we write

a+ bx1 = y1

a+ bx2 = y2

which comprise a pair of conditions on a pair of undetermined parameters {a, b}.
Since those parameters enter linearly into the construction of (14), we find it
natural to write (

1 x1

1 x2

) (
a
b

)
=

(
y1
y2

)

and confront therefore a problem of type

= (15)

which is susceptible to analysis by the elementary methods of linear algebra.
The N -point system of equations

a+ bx1 = y1

a+ bx2 = y2

...
a+ bxN = yN

—which (appealing again to linearity) can be notated


1 x1

1 x2
...

...
1 xN




(
a
b

)
=



y1
y2
...
yN




and displays the structure

= (16)
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—is, on the other hand, insoluable because over-determined .

There are, in such a situation, several distinct ways in which we might
proceed. For example, we might (in a phrase borrowed from the language of
statistics) “modify our hypothesis:”

y = a+ bx
↓

y = a+ bx+ cx2 + · · ·+ qxn︸ ︷︷ ︸ (17)

number n+ 1 of adjustable parameters = number N of data points

To do so is to be led back again to the well-posed problem (15); we recover, in
fact, a notational variant of (3), to which the classical methods of §3 directly
pertain. We observe in this connection that (17)—which might be notated

y = F (x; a, b, c, . . . , q)
= linear combination of simple “power functions” xk (18)

—serves generally to inscribe on the {x, y}-plane not a line but a curve; the
curve-fitting problem (15) acquires its linearity from the circumstance that the
adjustable parameters {a, b, c, . . . , q} enter linearly into the construction of the
function F (x; a, b, c, . . . , q), and that feature of the problem would remain intact
if in place of (18) we were to write

= linear combination of any prescribed functions fk(x) (19)

In place of (3) we would then have




f11 f12 f13 . . . f1n

f21 f22 f23 . . . f2n

f31 f32 f33 . . . f3n
...

...
...

...
fn1 fn2 fn3 . . . fnn







p1
p2
p3
...
pn


 =




y1
y2
y3
...
yn




where fij ≡ fj(xi) and where the adjustable parameters have now been notated
{p1, p2, p3, . . . , pn}. The generalization (18) �→ (19) has entailed sacrifice of the
polynomial-based material developed in §3, but has otherwise cost nothing; an
instance of (15) has become another instance of (15).

In many contexts it would, however, be unacceptably alien to the spirit of
the inquiry to “modify our hypothesis” every time we acquired an additional
data point; our objective—at least in connection with the statistical analysis
and interpretation of observational data—is to use a “least-possible number
of adjustable parameters” to provide a “best-possible account of the available
data,” and we expect the acquisition of new data to result not in parameter
proliferation but in reduced uncertainty. Looking in this light back again to the
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over-determined system (16), we observe that while it is (in the general case)
not self-consistently possible to write




f11 f12 f13 . . . f1n

f21 f22 f23 . . . f2n

f31 f32 f33 . . . f3n
...

...
...

...
...

...
...

...
...

...
...

...
fm1 fm2 fm3 . . . fmn







p1
p2
p3
...
pn


 =




y1
y2
y3
...
...
...
ym




it is possible to set




f11 f12 f13 . . . f1n

f21 f22 f23 . . . f2n

f31 f32 f33 . . . f3n
...

...
...

...
...

...
...

...
...

...
...

...
fm1 fm2 fm3 . . . fmn







p1
p2
p3
...
pn


 ≡




Y1(p1, p2, . . . , pn)
Y2(p1, p2, . . . , pn)
Y3(p1, p2, . . . , pn)

...

...

...
Ym(p1, p2, . . . , pn)




(20.1)

and to require of the parameters {p1, p2, . . . , pn} that

m∑
i=1

[Yi(p1, p2, . . . , pn)− yi]
2 = minimum (20.2)

The sum of squares on the left can be notated

Q(p) ≡ (Fp− y)T(Fp− y)
= pT

Sp− 2pTq + y Ty : S ≡ F
T
F is n× n symmetric and q ≡ F

Ty

= quadratic form in the variables p, minimized at p = pminimal

Immediately ∇∇∇pQ = 2(Sp− q), so ∇∇∇pQ = 0 entails

pminimal = S
–1q = (F T

F)–1
F

Ty

= Ey where E ≡ (F T
F)–1

F
T (21)

≡ n×m “generalized left inverse” of F

which, by the way, gives

Q(pminimal) = yT(I− FE)y (22)

Several comments are now in order:
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At (20) we have ventured down a path first explored in print (under the
title “Nouvelles méthodes pour la détermination des orbites des comètes”) by
Legendre in , though Gauss reported in his Theoria Motus Corporum
Coelestium in Sectionibus Conicis Solum Ambientium (“Theory of the Motion
of Heavenly Bodies Moving about the Sun in Conic Sections,” ) that he
had been making routine use of the “Method of Least Squares” since .
Both Legendre and Gauss were concerned (or so we infer from the titles of their
publications) with instances of the curve-fitting problem; i.e., with astrophysical
applications of (20), but by the last decade of the 19th Century the method
of least squares—which takes its name, obviously, from the structure of the
“goodness-of-fit criterion” (20.2)—had become fundamental to a field which
has relatively little to do with curve-fitting per se: it had become fundamental
to the new discipline of statistics, where it had spawned such concepts as
“linear regression” and “correlation coefficient.” What began as a method
for achieving the “imperfect best approximation” to the solution of a class of
problems involving what might be called “analytic geometry in the presence of
errors” had evolved—not too surprisingly, I think—into a “geometrical theory
of errors.”18

The method of least squares was originally presented as an exercise in
applied calculus, not as an exercise in applied linear algebra (which in 
hadn’t been invented yet!). When formulated in the latter terms it leads to a
seldom-remarked generalization of the concept of matrix inversion, and it is to
that implication of (20) that I now turn. Let F be an arbitrary m× n matrix,
with m ≥ n:

F ≡

The associated right-inversion problem—the problem of exhibiting an n × m
matrix G such that

FG = Im×m : =

—is (unless m = n) over-determined, since it imposes m2 conditions on the
mn < m2 elements of G. On the other hand, the left inversion problem—the

18 For a nice account of this interesting chapter in the history of mathematics,
see S. M. Stigler, The History of Statistics; The Measurement of Uncertainty
before 1900 (). Of course, (20) does continue to serve the curve-fitting
purpose for which it was originally intended; see §§1.6.6 & 3.8 and the entry
Fit[data, funs, vars] on p. 1088 of The Mathematica Book (Version 3.0, ).
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problem of exhibiting an n×m matrix E such that

EF = In×n : =

—is (unless m = n) under-determined, since it imposes only n2 conditions on
the mn > n2 elements of E; it admits, therefore, of many solutions. At (21) the
method of least squares assigned special significance to one of those:

E ≡ (F T
F)–1

F
T = –1 (23)

The presumption here is that the n × n square matrix F
T
F is non-singular.

Gratifyingly, (23) gives back the ordinary inverse F
–1 when F itself is square

(m = n) and non-singular. When that is the case—i.e., when the left inverse E

is also a right inverse—the expression on the right side of (22) vanishes.

We have touched here on an idea which appears to have occurred first
to E. H. Moore, whose remarks at a regional meeting in  of the American
Mathematical Society are summarized in that society’s Bulletin19 but attracted
little attention. The subject was independently reinvented in the mid-s
by Roger Penrose, whose initial publication20 lacked clear motivation and was
phrased quite abstractly, but was followed promptly by a paper21 intended
to establish “relevance to the statistical problem of finding ‘best’ approximate
solutions of inconsistent systems of equations by the method of least squares.”
What I have called the “generalized left inverse” is sometimes called the “Moore-
Penrose inverse,” but is known to Mathematica as “PsuedoInverse[m],” and is
considered by Mathematica to arise by specialized application of the so-called
“singular value decomposition” of F. For a good modern account of the subject
and its applications, see S. L. Campbell & C. D. Meyer, Generalized Inverses
of Linear Transformations (). Also useful is Appendix 2 in P. Lancaster’s
Theory of Matrices () and the material on p.105 in Richard Bellman’s
Introduction to Matrix Analysis ().

19 Bull. Amer. Math. Soc. (2) 26, 394 (1920).
20 “A generalized inverse for matrices,” Proc. Camb. Phil. Soc. 51, 406 (1955).
21 “On best approximate solutions of linear matrix equations,” Proc. Camb.

Phil. Soc. 52, 17 (1956).
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6. Sums of powers. In §1 we introduced the functions

S(n; p) ≡
n∑

k=1

kp

that describe sums of powers, and found in particular that

S(n; 0) = n

S(n; 1) = 1
2n(1 + n)

S(n; 2) = 1
6n(1 + n)(1 + 2n)

S(n; 3) = 1
4n

2(1 + n)2

...
S(n; p) = polynomial of order p+ 1 in n (24)

These formulæ assign natural values to expressions of (for example) the type
S(n + 1

2 ; p), but do not clarify what we might mean by S(n; p + 1
2 ). In an

(ill-fated) effort to get a handle on that problem, we construct the generating
function

G(t;n) ≡
∞∑

p=0

1
p!
S(n; p)tp =

∞∑
p=0

1
p!

{ n∑
k=1

kp

}
tp

=
n∑

k=1

ekt

=
n∑

k=1

(et)k

=
e(n+1)t − et
et − 1

Recalling now22 the definition

text

et − 1
=

∞∑
n=0

1
n!
Bn(x)tn

of the Bernoulli polynomials Bn(x), we have

G(t;n) =
∞∑

p=0

1
p!

{
Bp(n+ 1)−Bp(1)

}
tp−1

=
∞∑

p=0

1
p!

{Bp+1(n+ 1)−Bp+1(1)
p+ 1

}
tp by B0(x) = 1

22 See J. Spanier & K. Oldham, Atlas of Functions (), Chapter 19.
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Finally we use Bn(1) = (−)nBn (here Bn is the nth Bernoulli number: see p. 38
of Spanier & Oldham) to obtain the famous identity

S(n; p) ≡
n∑

k=1

kp = 1
p+1

{
Bp+1(n+ 1) + (−)pBp+1

}
(25)

This formula makes explicit the meaning of (24), but does still not assign
meaning to 1p + 2p + · · ·+ np when p is non-integral. However, we have

S(n; p) =
( d
dt

)p

G(t;n)
∣∣∣
t=0

=
( d
dt

)p{e(n+1)t − et
et − 1

}∣∣∣
t=0

: p = 0, 1, 2, . . .

which, in fact, works; Mathematica supplies

Limit[ e(n+1)t−et

et−1 , t->0] = n

Limit[∂t
e(n+1)t−et

et−1 , t->0] = 1
2n(1 + n)

Limit[∂t∂t
e(n+1)t−et

et−1 , t->0] = 1
6n(1 + 3n+ 2n2)

Limit[∂t∂t∂t
e(n+1)t−et

et−1 , t->0] = 1
4n

2(1 + n)2

...

from which we do in fact recover (24). The question now arises: Does it make
any sense to write (say)

S(n, 1
2 ) = 1

1
2 + 2

1
2 + · · ·+ n 1

2 =
( d
dt

) 1
2
{e(n+1)t − et

et − 1

}∣∣∣
t=0

?

The answer, disappointingly but clearly, is “No; generating functions—for the
simplest of reasons—do not work that way.” For if

G(t) = G0 +G1t+ 1
2!G2t

2 + · · ·+ 1
n!Gnt

n + · · ·

then (as was familiar already to Maclaurin)
(

d
dt

)p
G(t)

∣∣
t=0

= Gp : p = 0, 1, 2, . . .

but

(
d
dt

) 1
2G(t) = G0

1√
πt︸ ︷︷ ︸ +G12

√
t
π +G2

4
3

√
t3

π + · · ·+Gn
1

Γ (n+ 1
2 ) t

n− 1
2 + · · ·

∞ in the limit t ↓ 0

Proceeding now formally—with no other objective than to avoid infinity on the
one hand and triviality on the other—we might form

H(t) ≡
√
t ·G(t) = G0t

1
2 +G1t

3
2 + 1

2!G2t
5
2 + · · ·+ 1

n!Gnt
n+ 1

2 + · · ·
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giving

(
d
dt

) 1
2H(t) = G0

1
2

√
π︸ ︷︷ ︸ +G1

4
3

√
πt+ 1

2!G2
15
16

√
πt2 + · · ·+ 1

n!Gn
Γ (n+ 3

2 )

Γ (n+1) t
n + · · ·

= G1
2

Such a claim is, however, inconsistent with the facts of the matter in the
particular case at hand23 and is anyway implausible on its face: G1

2
is trying to

interpolate between G0 and G1, and should therefore be sensitive to the values
of all the numbers {G0, G1, G2, . . .}, but to write G1

2
=

√
π

2 G0 is to assert
that G1

2
stands in a fixed/universal relationship to G0, and is independent of

the values assumed by {G1, G2, . . .}. We conclude that the generating function
technique is ill-adapted to the problem of “interpolation in the exponent.”

23 It is manifestly not the case that S(n; 0) =
√

π
2 S(n; 1

2 ).


